
 It’s Time For Real-Time

KL Feature Overview

 Pronounced ‘kale’
 Very small language scope
 Syntactically based on C/C++, but simpler
 Powerful type system
 Supports multithreading
 Compiles to optimized machine code
 Not interpreted

Kernel Language (KL)

 Command line tool
 Similar to python executable
 Good for learning and debugging

KL Tool

 The operator statement is used for main entry
functions.

 Curly braces, { and }, are used to define code
execution blocks.

 The KL tool executes an operator called entry.
 The report statement is used to print directly

to the host application.

KL Operators - Hello World
File reference: 01_kl/01_helloworld.kl

 Variables are defined by their type.
 Basic types for example are Boolean, Integer,

Scalar, and String.
 Numeric basic types support the standard

arithmetic operators (+, -, *, /, etc).

KL Variables
File reference: 01_kl/02_variables.kl

 The function statement is used define additional
functions or methods on data structures.

 Function parameters can be flagged as
in or io.

 Functions can return values. If no return value is
specified the function can be considered void.

KL Functions
File reference: 01_kl/03_functions.kl

 The conditional language features match most other
programming languages (such as JavaScript).

 The if statement can be used for conditional code
blocks. The else statement can be used for the
second case of a condition.

 The switch statement can be used for a long list of
cases to reduce the code.

KL Conditions
File reference: 01_kl/04_conditions.kl

 Loops can be used to perform iterative tasks.
 KL provides a for loop as well as a while loop,

so counted vs. condition based strategies.

KL Loops
File reference: 01_kl/05_loops.kl

 KL arrays represent a list of values.
 Arrays are defined by the [] suffix.
 Brackets can also be used to access elements.
 Arrays are reference counted.
 Arrays can be concatenated using + and +=.
 Array element access is guarded, but can be

unguarded for improved performance.

KL Arrays
File reference: 01_kl/06_arrays.kl, 01_kl/07_unguarded.kl

 KL dictionaries represent a map from one type (key)
to another (value).

 Dictionary are defined by the [key] suffix.
 Brackets can also be used to access elements.
 Dictionaries are also reference counted, like Arrays.

KL Dictionaries
File reference: 01_kl/08_dictionaries.kl

 KL provides a rich type system.
 Structs represent simple, nestable data structures.
 Structs can provide methods.
 Structs are always copied.
 All (!) types used within any Fabric Engine product

are purely implemented in KL, there are no black
boxes.

KL Structs
File reference: 01_kl/09_structs.kl

 Objects are similar to structs.
 Objects are reference counted.
 Objects need to be initialized.
 Objects typically are used for heavy data

structures which introduce latency for copy
operations.

KL Objects
File reference: 01_kl/10_objects.kl

 KL types can be required into any KL file.
 The require statement essentially includes a KL

type into the current one.
 Aside from types require can also be used to

load KL extensions.
 The KL tool can be launched with the loadexts

flag to load all of the standard extensions.

Requiring KL types
File reference: 01_kl/11_require.kl

 KL can deploy multithreading in a variety of ways.
 PEX provides an explicit threading mechanism.
 PEX uses the <<< and >>> notation,

similar to CUDA.
 PEX only works with operators, not with functions.

PEX – Parallel Execution
File reference: 01_kl/12_pex.kl

 Can be used to perform recursive-parallel operations
 Compute on very large data sets
 Values inside of MR are created using Producers
 MR can return a single result only, for example.

MR – Map Reduce
File reference: 01_kl/13_mapreduce.kl

