
 It’s Time For Real-Time

KL Feature Overview

 Pronounced ‘kale’
 Very small language scope
 Syntactically based on C/C++, but simpler
 Powerful type system
 Supports multithreading
 Compiles to optimized machine code
 Not interpreted

Kernel Language (KL)

 Command line tool
 Similar to python executable
 Good for learning and debugging

KL Tool

 The operator statement is used for main entry
functions.

 Curly braces, { and }, are used to define code
execution blocks.

 The KL tool executes an operator called entry.
 The report statement is used to print directly

to the host application.

KL Operators - Hello World
File reference: 01_kl/01_helloworld.kl

 Variables are defined by their type.
 Basic types for example are Boolean, Integer,

Scalar, and String.
 Numeric basic types support the standard

arithmetic operators (+, -, *, /, etc).

KL Variables
File reference: 01_kl/02_variables.kl

 The function statement is used define additional
functions or methods on data structures.

 Function parameters can be flagged as
in or io.

 Functions can return values. If no return value is
specified the function can be considered void.

KL Functions
File reference: 01_kl/03_functions.kl

 The conditional language features match most other
programming languages (such as JavaScript).

 The if statement can be used for conditional code
blocks. The else statement can be used for the
second case of a condition.

 The switch statement can be used for a long list of
cases to reduce the code.

KL Conditions
File reference: 01_kl/04_conditions.kl

 Loops can be used to perform iterative tasks.
 KL provides a for loop as well as a while loop,

so counted vs. condition based strategies.

KL Loops
File reference: 01_kl/05_loops.kl

 KL arrays represent a list of values.
 Arrays are defined by the [] suffix.
 Brackets can also be used to access elements.
 Arrays are reference counted.
 Arrays can be concatenated using + and +=.
 Array element access is guarded, but can be

unguarded for improved performance.

KL Arrays
File reference: 01_kl/06_arrays.kl, 01_kl/07_unguarded.kl

 KL dictionaries represent a map from one type (key)
to another (value).

 Dictionary are defined by the [key] suffix.
 Brackets can also be used to access elements.
 Dictionaries are also reference counted, like Arrays.

KL Dictionaries
File reference: 01_kl/08_dictionaries.kl

 KL provides a rich type system.
 Structs represent simple, nestable data structures.
 Structs can provide methods.
 Structs are always copied.
 All (!) types used within any Fabric Engine product

are purely implemented in KL, there are no black
boxes.

KL Structs
File reference: 01_kl/09_structs.kl

 Objects are similar to structs.
 Objects are reference counted.
 Objects need to be initialized.
 Objects typically are used for heavy data

structures which introduce latency for copy
operations.

KL Objects
File reference: 01_kl/10_objects.kl

 KL types can be required into any KL file.
 The require statement essentially includes a KL

type into the current one.
 Aside from types require can also be used to

load KL extensions.
 The KL tool can be launched with the loadexts

flag to load all of the standard extensions.

Requiring KL types
File reference: 01_kl/11_require.kl

 KL can deploy multithreading in a variety of ways.
 PEX provides an explicit threading mechanism.
 PEX uses the <<< and >>> notation,

similar to CUDA.
 PEX only works with operators, not with functions.

PEX – Parallel Execution
File reference: 01_kl/12_pex.kl

 Can be used to perform recursive-parallel operations
 Compute on very large data sets
 Values inside of MR are created using Producers
 MR can return a single result only, for example.

MR – Map Reduce
File reference: 01_kl/13_mapreduce.kl

