
 It’s Time For Real-Time

Splice API

 Abstracts the Fabric Core
 Simplifies the use of KL within C/C++
 Base layer for all DCC integrations
 Allows integration into custom graphs

Splice API for C/C++

 Cross platform build system
 Of course you can use others too (like CMake)
 Similar workflow in Visual Studio

Scons

 Splice API is provided as both static + dynamic
 For static linking you can choose to use

a shared or also static FabricCore.
 You need to speficy the library kind used,

both for the Core and for Splice, using the
FEC_STATIC, FEC_SHARED, FECS_STATIC
and FECS_SHARED defines.

Static vs. Shared

 Create a FabricSplice::DGGraph
 Create a single FabricCore::DGNode
 Create a single KL Operator to

report “Hello World”

Hello World
File reference: 02_spliceapi/01_helloWorld/main.cpp

 Custom log callbacks
 Custom error callbacks
 Custom KL report callbacks
 Custom KL status callbacks
 Custom compiler error callbacks

Logging
File reference: 02_spliceapi/02_logging/main.cpp

 The FABRIC_RT_PATH is used for KL types
 The FABRIC_EXTS_PATH is used for extensions
 FabricSplice::addRTFolder
 FabricSplice::addExtFolder
 Callbacks for runtime provided types

KL Types and Extensions
File reference: 02_spliceapi/03_kltypes/main.cpp

 Used to push data in and pull data out
 Map to a member on the DGNode
 Provide information about the data

Ports – Data IO
File reference: 02_spliceapi/04_ports/main.cpp

 RTVals provide a way to access KL types in C/C++
 You can iterate the data structure
 You can invoke methods on them

RTVals
File reference: 02_spliceapi/05_rtvals/main.cpp

 A single DGGraph can contain several DGNodes
 DGNodes can depend on other DGNodes
 KL Operators can access ports on dependencies
 Independent branches perform in parallel

(branch based multi threading)

Subgraphs
File reference: 02_spliceapi/06_subgraphs/main.cpp

 A DGGraph can be saved to a Splice file,
or to a Variant dictionary.

 These files represent portable tools.
 DGPorts can store arbitrary options, which are

understood as hints for each integration.
 An empty DGGraph can load a Splice file, which

reconstructs all elements.

Persistence
File reference: 02_spliceapi/07_persistence/main.cpp

